Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Changes in the structural and electrical properties of vacuum post-annealed tungsten- and titanium-doped indium oxide films deposited by radio frequency magnetron sputtering

Identifieur interne : 000608 ( Chine/Analysis ); précédent : 000607; suivant : 000609

Changes in the structural and electrical properties of vacuum post-annealed tungsten- and titanium-doped indium oxide films deposited by radio frequency magnetron sputtering

Auteurs : RBID : Pascal:12-0168396

Descripteurs français

English descriptors

Abstract

Tungsten- and titanium-doped indium oxide (IWO and ITiO) films were deposited at room temperature by radio frequency (RF) magnetron sputtering, and vacuum post-annealing was used to improve the electron mobility. With increasing deposition power, the as deposited films showed an increasingly crystalline nature. Compared with ITiO films, IWO films showed crystallinity at lower RF power. IWO films are partially crystallized at 10 W deposition power and become nearly fully crystalline at 20 W. ITiO films are fully crystalline only at 75 W. For this reason, film thickness has a greater impact on the electrical properties of IWO films than ITiO films. Vacuum post-annealing is more effective in improving electron mobility for amorphous than for (partially) crystalline IWO and ITiO films. Changes in the electrical properties of ITiO films can be better controlled as a function of annealing temperature than those of IWO films. Finally, post annealed 308 nm-thick IWO and 325 nm-thick ITiO films have approximately 80% transmittance in visible and near infrared wavelengths (up to 1100 nm), while their sheet resistances decrease to 9.3 and 10 Ω/□, and their electron mobilities are 51 cm2V-1 s-1 and 50 cm2V-1 s-1, respectively, making them suitable for use as Transparent Conductive Oxide layers of low bandgap solar cells.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0168396

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Changes in the structural and electrical properties of vacuum post-annealed tungsten- and titanium-doped indium oxide films deposited by radio frequency magnetron sputtering</title>
<author>
<name sortKey="Yan, L T" uniqKey="Yan L">L. T. Yan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of science, Beijing Jiaotong University</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schropp, R E I" uniqKey="Schropp R">R. E. I. Schropp</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Nanophotonics - Physics of Devices, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, P.O. Box 80.000</s1>
<s2>3508 TA Utrecht</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>3508 TA Utrecht</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0168396</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0168396 INIST</idno>
<idno type="RBID">Pascal:12-0168396</idno>
<idno type="wicri:Area/Main/Corpus">001F74</idno>
<idno type="wicri:Area/Main/Repository">001F61</idno>
<idno type="wicri:Area/Chine/Extraction">000608</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cathode sputtering</term>
<term>Crystallinity</term>
<term>Doping</term>
<term>Electrical properties</term>
<term>Electron mobility</term>
<term>Energy gap</term>
<term>Indium additions</term>
<term>Indium oxide</term>
<term>Layer thickness</term>
<term>Near infrared radiation</term>
<term>Oxide layer</term>
<term>Physical vapor deposition</term>
<term>Radiofrequency sputtering</term>
<term>Sheet resistivity</term>
<term>Solar cells</term>
<term>Sputter deposition</term>
<term>Sputtering</term>
<term>Temperature dependence</term>
<term>Thick films</term>
<term>Thin films</term>
<term>Titanium oxide</term>
<term>Transmittance</term>
<term>Tungsten additions</term>
<term>Vacuum annealing</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété électrique</term>
<term>Addition tungstène</term>
<term>Addition indium</term>
<term>Couche mince</term>
<term>Dépôt physique phase vapeur</term>
<term>Pulvérisation haute fréquence</term>
<term>Dépôt pulvérisation</term>
<term>Pulvérisation cathodique</term>
<term>Recuit sous vide</term>
<term>Mobilité électron</term>
<term>Cristallinité</term>
<term>Epaisseur couche</term>
<term>Dépendance température</term>
<term>Couche épaisse</term>
<term>Oxyde de titane</term>
<term>Oxyde d'indium</term>
<term>Facteur transmission</term>
<term>Rayonnement IR proche</term>
<term>Résistivité couche</term>
<term>Couche oxyde</term>
<term>Bande interdite</term>
<term>Cellule solaire</term>
<term>Dopage</term>
<term>Pulvérisation irradiation</term>
<term>TiO2</term>
<term>7350</term>
<term>8115C</term>
<term>7320</term>
<term>6855J</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tungsten- and titanium-doped indium oxide (IWO and ITiO) films were deposited at room temperature by radio frequency (RF) magnetron sputtering, and vacuum post-annealing was used to improve the electron mobility. With increasing deposition power, the as deposited films showed an increasingly crystalline nature. Compared with ITiO films, IWO films showed crystallinity at lower RF power. IWO films are partially crystallized at 10 W deposition power and become nearly fully crystalline at 20 W. ITiO films are fully crystalline only at 75 W. For this reason, film thickness has a greater impact on the electrical properties of IWO films than ITiO films. Vacuum post-annealing is more effective in improving electron mobility for amorphous than for (partially) crystalline IWO and ITiO films. Changes in the electrical properties of ITiO films can be better controlled as a function of annealing temperature than those of IWO films. Finally, post annealed 308 nm-thick IWO and 325 nm-thick ITiO films have approximately 80% transmittance in visible and near infrared wavelengths (up to 1100 nm), while their sheet resistances decrease to 9.3 and 10 Ω/□, and their electron mobilities are 51 cm
<sup>2</sup>
V
<sup>-1</sup>
s
<sup>-1</sup>
and 50 cm
<sup>2</sup>
V
<sup>-1</sup>
s
<sup>-1</sup>
, respectively, making them suitable for use as Transparent Conductive Oxide layers of low bandgap solar cells.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>520</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Changes in the structural and electrical properties of vacuum post-annealed tungsten- and titanium-doped indium oxide films deposited by radio frequency magnetron sputtering</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YAN (L. T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHROPP (R. E. I.)</s1>
</fA11>
<fA14 i1="01">
<s1>School of science, Beijing Jiaotong University</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Nanophotonics - Physics of Devices, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, P.O. Box 80.000</s1>
<s2>3508 TA Utrecht</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>2096-2101</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000502899670780</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0168396</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Tungsten- and titanium-doped indium oxide (IWO and ITiO) films were deposited at room temperature by radio frequency (RF) magnetron sputtering, and vacuum post-annealing was used to improve the electron mobility. With increasing deposition power, the as deposited films showed an increasingly crystalline nature. Compared with ITiO films, IWO films showed crystallinity at lower RF power. IWO films are partially crystallized at 10 W deposition power and become nearly fully crystalline at 20 W. ITiO films are fully crystalline only at 75 W. For this reason, film thickness has a greater impact on the electrical properties of IWO films than ITiO films. Vacuum post-annealing is more effective in improving electron mobility for amorphous than for (partially) crystalline IWO and ITiO films. Changes in the electrical properties of ITiO films can be better controlled as a function of annealing temperature than those of IWO films. Finally, post annealed 308 nm-thick IWO and 325 nm-thick ITiO films have approximately 80% transmittance in visible and near infrared wavelengths (up to 1100 nm), while their sheet resistances decrease to 9.3 and 10 Ω/□, and their electron mobilities are 51 cm
<sup>2</sup>
V
<sup>-1</sup>
s
<sup>-1</sup>
and 50 cm
<sup>2</sup>
V
<sup>-1</sup>
s
<sup>-1</sup>
, respectively, making them suitable for use as Transparent Conductive Oxide layers of low bandgap solar cells.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C50</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C20</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Addition tungstène</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Tungsten additions</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Dépôt physique phase vapeur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Physical vapor deposition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Pulvérisation haute fréquence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Radiofrequency sputtering</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Pulverización alta frecuencia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Pulvérisation cathodique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Cathode sputtering</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Recuit sous vide</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Vacuum annealing</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Recocido en el vacío</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Cristallinité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Crystallinity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Cristalinidad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Couche épaisse</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Thick films</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Facteur transmission</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Transmittance</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Factor transmisión</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Rayonnement IR proche</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Near infrared radiation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Résistivité couche</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Sheet resistivity</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Couche oxyde</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Oxide layer</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Capa óxido</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Doping</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Doping</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Pulvérisation irradiation</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Sputtering</s0>
<s5>36</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>7350</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>7320</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>129</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000608 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000608 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:12-0168396
   |texte=   Changes in the structural and electrical properties of vacuum post-annealed tungsten- and titanium-doped indium oxide films deposited by radio frequency magnetron sputtering
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024